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Introduction 
 

The nerve agents, organophosphates, are some of the 

most toxic synthetically derived chemical compounds 
known to mankind. Their primary action is to deactivate 

acetylcholinesterase (AChE), a key enzyme responsible for 

maintaining a functional concentration of the 

neurotransmitter acetylcholine in the postsynaptic neuronal 
gap1,2. The speed of action of these agents and their lethal 

effectiveness against warm-blooded organisms has led 

state and non-state actors to develop them with the aim of 
exploiting these properties against humans. 

Temporal and geopolitical developments on the 

battlefield have led to considerations as to whether the 

nerve agents referred to as G-series [tabun (GA), sarin 
(GB), soman (GD), cyclosarin (GF)] or V-series (VX, VR, 

CVX) can inevitably be used only as combat agents, or 

whether their potential modification can yield compounds 
better suited to be used for subversive purposes, for the 

elimination of persons of high interest3. 

This shift can be traced historically to the present, 

with the combat use of Agent GB demonstrated in the 
Syrian Civil War in 2013 (ref.4) and 2017 (ref.5), but also 

to the targeted elimination of DPRK leader Kim Jong-un's 

half-brother using the more suitable Agent VX, directly at 

the Kuala Lumpur airport in early 2017 (ref.6). 
These events have led to the confirmation that the 

substances in question are still a threat to the international 

community and have triggered the tightening of the 

control mechanisms defined by the OPCW (ref.7). 
Subsequently, substances were also added to the list of 

substances subject to strict control so-called A-series, 

known as novichok, precisely based on their use in the 
attempted liquidation of Sergei Skripal and his daughter 

Yulia in March 2018 in the city of Salisbury in the UK8–10 

with a statement of the need to have available 

identification instrumentation with a trace and ultra-trace 
disposition. This proved the suggestion that the nearly 50-

year-old Soviet project of so-called fourth-generation 

agents11, originating in the Cold War, is still active and its 
results used to attempt to eliminate human targets. 

The latter incident thus catalyzed efforts at the 

investigative level to establish the origin of these 

substances and identify the alleged perpetrators, but also 
justified the need for research into protection against these 

threats, particularly in the areas of analysis, 

decontamination and research aimed at describing these 
substances structurally and chemically, defining their likely 

properties and toxicity. 
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The absence of sufficient analytical data in 

connection with the A-series substances and the diversity 
in the leaked information from the top secret Soviet 

project led the research institutes to synthesize all their 

predicted structures and then to evaluate whether these 

substances carried the predicted properties and to what 
extent their analytical data were consistent with the 

samples obtained at Salisbury. In addition to the structures 

described by Hoenig12 and Ellison13, the most likely 
structure was that of Mirzyanov14,15. 

The importance of A-series agents, whether for 

combat or diversionary use, is thus undeniable. In order to 

develop effective protection against them, it is necessary 
to study them in detail and then streamline the process of 

their chemical analysis by different methods and from 

different matrices, preferably subsequently unifying it into 
a clear methodology. 

 

Application of electron density functional theory 

(DFT) 
 

The electron density functional theory is a method 

based on quantum chemistry mechanisms, which, based on 
the knowledge of the chemical structure of organic 

substances and the environment in which they are located, 

can optimize the studied molecule in terms of bond 

lengths, their vibrational states, bond angles, the strength 
of the electric potential, etc.16–19. Based on the computed 

data, one can then efficiently estimate the location and 

robustness of HOMO and LUMO orbitals, create a 3-D 
probability map of electron density, vector the dipole 

moment on the molecule, and make relatively accurate 

estimates on these quantized physicochemical quantities in 

various applications20. 
Carlsen15 has used a wide range of software tools also 

using DFT as PASS, T.E.S.T., ACD/iLab, F.D.S.P.C, 

ACD/Percepta and QSAR Toolbox to calculate the 
probability of specific biological activity of selected 

compounds and based on these estimates concludes that 

there is a clear difference between the biological activity 

of V-series versus A-series compounds, and in terms of 
combat use their results speak against the A-series. The 

authors themselves, in a partial conclusion, describe the 

low probability of blocking cholinergic excitatory 
transmission by A-series agents as surprising. 

In their work, Khafa et al.21 graphically expressed the 

electron density of selected representatives of chemical 

warfare agents and on this basis subsequently assessed 
their disposition to chemical reactions according to 

visualizations of electrostatic charge dislocation on the 

molecule. 
Bhakhoa et al.20 used the M06-2X/6-311+G(d,p) 

method to quantify quantities that have enormous 

implications for considerations related to reactivity, 

stability, and reaction disposition. They refer to these 
quantities as reactivity descriptors. Based on the calculated 

energy balances on the molecule, the authors further flesh 

out these descriptors, claiming that they develop the idea 

of ionization and electron affinity properties of the 

molecule. They claim that these reactivity descriptors, 
allow an objective assessment of the overall stability of 

the molecules of the substances under investigation. They 

refer to the difference between the energies of the frontier 

orbitals as an indicator of stability and state that this 
increases as follows: VX < VR < A-234 < GB.  

Authors Wang et al.22 further develop the argument 

that the large HOMO-LUMO energy gap is correlated 

with the dipole moment, and in their study they discuss 
the correlation of the energy barrier with the dipole 

moment and other quantities related to the electron density 

mapping of the molecule. 
Based on these findings, it can be concluded that 

nerve agents are generally strongly electrophilic and are 

thus willing to accept incoming electron density from 
nucleophilic species such as oxygen, nitrogen and sulphur, 

which from this perspective are the donor atoms 

preferentially acting as electropositive centres of nerve 

agents.  
The DFT analysis of the molecules studied, or its 

outputs in the form of differently interpretable energy 

quantities, thus bring an interesting perspective on the 
evaluation of the molecule's disposition to reactions, to the 

evaluation of its polarity, ionization potential and electron 

affinity, and allows the analyst to anticipate possible 

complications and to seek solutions to them already in the 
planning part of the experiment. The controversy over the 

use of these modern methods for the development of new 

chemical warfare agents, for example, remains a question, 
of when it is possible to model their hypothetical 

properties, to investigate their disposition to reactions, and 

their biological activity. 

 
LC/MS/MS analysis of highly hazardous  

organophosphorus compounds 

 
In terms of the application of this knowledge in the 

field of LC/MS/MS analysis, considerations regarding 

sample preparation, the appropriate choice of the 

appropriate column and the appropriate combination of 
mobile phases and the appropriate choice of their 

modifiers are useful in the case of the LC part. The 

influence of the mentioned descriptors for the mass 
identification part is indisputable for the determination of 

the suitability of the test substance for the ESI technique 

and carries with it information and the choice of the 

intensity of the ionization voltage due to the possible 
unwanted fragmentation of the test molecule already in 

this pre-part of the MS/MS system. 

The use of the LC method for the analysis of 
organophosphorus warfare agents without tandem with 

another identification method cannot be considered a used 

procedure. This is mainly due to the hydrolytic 

predispositions of these compounds, so direct analysis, 
moreover with great quantitative analytical ambitions, 

does not make much sense here. Also, the possibility of 

derivatization of the degradation products of this type of 



D. Trefilík                                                                                                                                         Chem. Listy 118, 103−110 (2024)                        

  
 

sample, only by the silylating reagents used for GC/MS, is 

fundamentally impossible with this kind of 
instrumentation. 

It is, however, very common to use tandem LC/MS/

MS to analyze degradation products or high molecular 

weight adducts of organophosphorus BCHL with their 
affinity enzymes with advantage and high sensitivity. 

Oudejans23 used LC/MS/MS to analyze the substance VX 

in the context of its stability in porous materials after 
decontamination. The OPCW and Lee24 refer to the LC/

MS/MS method as an effective tool for the forensic 

analysis of environmental and biomedical samples, where 

sensitivities in the order of 1 ng ml–1 and 0.1 ng ml–1 
respectively can be successfully achieved in the 

identification of degradation and metabolic products when 

working in ion selection mode. Tsuchihashi25 or Katagi26 
emphasize the importance of the LC/MS/MS method in 

the potential misuse of VX, building on their historical 

still not-too-distant analytical experience with the misuse 

of sarin in the Tokyo subway. 
Bryant27 used LC/MS/MS in his study and found that 

the degradation metabolic products of these compounds 

are much more stable than their "parents". Their quantity 
is thus a good measure of the intensity of an individual's 

intoxication. 

GC/MS is a very efficient method for the analysis of 

organophosphates, however, it has its limitations for the 
analysis of their degradation products, where they cannot 

be determined directly and need to be suitably derivatized 

and therefore complicated to convert the degradation 
products into organic solvent28–30. 

Mirbabaei used Agilent 6410B triple quadrupole to 

study31 the biodegradation of A-234. As a result of the 

study, A-234 was found to be a significant urinary marker 
of intoxication with this substance and the presence of 

adducts of A-234 with the amino acid tyrosine and the 

enzyme AChE was found too. 
The LC/MS/MS method has thus become a relatively 

attractive form of determining the degradation products of 

chemical warfare agents using their stability, and relative 

polarity, which allows direct analysis of aqueous samples 
or aqueous extracts with little or no further treatment.  

 

Neural networks as a tool for large-scale data 
processing 

 

Attempts to transform the neural connections in the 

human brain into a mathematical model capable of 
capturing these complex nonlinearities have been known 

since the early 1940s. It was found that it would not be 

difficult to design the structure of the model, since it was 
only a matter of copying the analogy of the functioning of 

the neural network in the brain and modifying it 

appropriately. Thus, Donald Hebb32 in 1949 in his 

groundbreaking monograph based on his study of this 
biological analogy and conditioned reflexes, defined an 

algorithm that allowed a neuron to learn by changing the 

weights of its inputs. He did so based on the simple idea 

that if a neuron is excited correctly, then the connections 

that led to the excitation are strengthened. Conversely, if it 
is excited incorrectly, then these connections must be 

weakened. In its early days, the method did not allow for 

more complex applications, as they would have required 

a much larger neural network topology and thus a power 
of computing power. The development of neural networks 

was also hampered by the fact that a learning algorithm 

for multilayer neural networks had not been defined for 
a long time. This was not built until 1986 on the principle 

of backpropagation of error. With the gradual expansion 

of information technology, the complexity of realistic 

topologies and the number of applications, including those 
useful in the field of chemistry33, grew equivalently. 

The classification of wines34 addressed the 

hypothetical problem of whether their origin, i.e. 
a specific winery, can be estimated from a set of diverse 

chemical descriptors detectable by simple chemical 

analysis using a neural network. Wines, regardless of their 

type, were taken from three different locally related 
wineries and a chemical analysis of 13 characteristics was 

carried out (among the most important: alcohol content, 

malic acid, sediment content, pH of the sediment, 
magnesium content, phenol content, intensity of colour, 

etc.). Each wine thus described was assigned a winery. 

This dataset was used to train a neural network of ten 

hidden layers to discriminate, with a defined error, which 
wines belong to which winery.  

Gasteiger33 describes the use of neural networks in 

various areas of chemistry, specifically in estimating 
chemical reactivity, where descriptors such as total 

charge, dissociation energy, electronegativity, and polarity 

were the input to the network and the output was the 

expected reactivity. This model was then implemented by 
Röse35 on 29 aliphatic compounds that contained 385 

bonds, each of which could be further heterocyclically 

cleaved, creating 770 possibilities for their cleavage. After 
1,300 cycles, which are referred to as epochs in neural 

networks, the data already showed good agreement with 

the expected outputs, and the network trained in this way 

could be used for similar types of compounds. 
Tusar36 monitored the pH and alcohol content 

dependencies in the HPLC analysis of the components of 

Spanish wines. According to the ability to separate the 
different characteristic components of the wine, he 

calculated the selectivity factor SF. Using a modelling tool 

published by Zupan37 based on the method of least 

squares, he projected a 3-D plot onto the ground plane and 
interpolated the dependence of the selectivity factor (SF) 

on the variables already mentioned.  

He then modelled the same problem using a neural 
network consisting of two identical input descriptors, and 

six neurons in one hidden layer, and the output was the 

observed SF. A comparison of the results of the two 

models can be found in Figure 1. 
Otto et al.38 studied the effect of the reaction 

conditions of benzene nitration on the formation of its 

monosubstituted derivative, or the ratio of the parallel 
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formation of p-nitrobenzene and o-nitrobenzene and also 

m-nitrobenzene. To optimize the reaction mixture and 

conditions of the reaction, intending to obtain 
predominantly one of the derivatives, he used neural 

networks. 

Significantly more sophisticated applications of 
neural networks, particularly in the field of physical 

chemistry, can be found, for example, in Kulichenko 

et al.39, where the authors linked electron density 

functional theory with neural networks while comparing 
the effectiveness of these methods in an application to the 

calculation of the interatomic potential affecting the 

stability of the molecule under study. They found that the 

use of neural networks, or machine learning, has 
a noticeable effect on the number of ab initio iterations in 

DFT calculations, thus significantly reducing 

computational time and eliminating errors. 
 

 

Experimental part 
 

Based on the need to unify and accelerate the process 

of finding the optimal methodology for the analysis of 
militarily significant organophosphorus compounds by 

LC/MS/MS, applicable in mobile and stationary 

laboratories of the Czech Armed Forces, an effort was 
made to build on current trends in the field of neural 

network processing of large amounts of data and the 

current possibilities of DFT-based modelling of molecule 

descriptors. 
 

Analytes 

 
Ethyl N-[1-(diethylamino)ethyliden]phosphoramido-

fluoridate (A-234, 86 %) [CAS 2387496-06-0], S-[2-(diiso-

propylamino)ethyl]-O-ethyl-methylphosphonothioate (VX, 

92 %) [CAS 50782-69-9], S-[2-(diethylamino)ethyl] O-(2-

-methylpropyl) P-methylfosfonothioate (R33, 73 %) [CAS 

159939-87-4] (all VVÚ Brno, Czech Republic), LTQ 

Positive calibration solution (Thermo Scientific, USA), 
tributyl phosphate PHR1205 Pharmaceutical standard 

99.8 % [CAS 126-73-8] (Sigma-Aldrich, USA). 

   
 

 

 

 
 

 

 
A-234        VX        R-33 

 

For analysis, all analytes were prepared at a molar 
concentration of 40 µmol l–1. Due to the low vapour 

tension of the analytes under investigation, weighing on 

a SAG 285 /M analytical balance (Mettler Toledo, 

Singapore) modified for weighing in a high-pressure fume 
hood was chosen for analytical dosing. 

 

Solvents 
 

Water (Optima, USA) [CAS 7732-18-5], acetonitrile 

(Optima, USA) [CAS 75-05-8], methanol (Biosolve) 

[CAS 67-56-1], formic acid (Optima, USA) [CAS 64-18-6], 
acetic acid (Optima, USA) [CAS 64-19-7], trifluoroacetic 

acid (Optima, USA) [CAS 76-05-1] all in LCMS purity. 

 
Instrumentation 

 

The Ultimate 3000 was used as a liquid 

chromatograph in a configuration consisting of consisting 
of a high-pressure module HPG-3200SD equipped with 

two side valves allowing measurements on two columns 

simultaneously, an automatic sample dispenser WPS-

Fig. 1. Comparison of results obtained by polynomial interpolation (a) and generated by a neural network (b)37 
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3000TLS ANALYTICAL and a UV-VIS module DAD-

3000. The columns were tempered in the TCC-3000SD 
module. The configuration was introduced by the SRD-

3200 degasser (all Thermo Scientific, USA). 

A robust LTQ XL (Thermo Scientific, USA) system 

with a linear ion trap and ion optics consisting of 
a quadrupole and an octupole was used as the mass 

detector in tandem with the previous instrumentation, and 

an ESI head was used as the ion source. 
Spray gas was generated by a GENIUS XE 35 

nitrogen generator (Peak, Scotland UK) with a default 

pressure setting of 100 psi. Compressed helium 5.0 

(Linde, Czech Republic) was used as the collision gas. 
 

Software 

 
Chromeleon 7.2.10 [commercial license] was used to 

control the HPLC system and XCalibur 4.5 was used to 

control the LTQ XL, where intercommunication between 

these software modules was provided by the SII for 
XCalibur server interface version 1.5.0.10747 

[commercial license]. Measured chromatographic data 

were interpreted in its QualBrowser toolbox, including the 
acquisition of mass spectra.  

Spartan 20′ software (Wavefunction Inc., USA) 

[academic license] was used to generate quantum-

chemical graphical outputs and calculations. Neural 
networks were constructed using the Deep Learning – 

NeuralNetwork module included in the MATLAB 2023a 

package (MathWorks, USA) [Campus-Wide license]. 
Neural network analysis scripts were also created in 

MATLAB to optimize the measurement conditions for 

selected analytes. 

As a robust software to create and verify 
fragmentation diagrams was used Mass Frontier 8.0 SR 1, 

which was used for a possible interpretation of mass 

spectra also. (Thermo Scientific, USA) [commercial 
license]. 

 

Choosing descriptors for the neural network  

 
Based on the need to optimize the ratio of the LC 

input parameters to the neural network output signal, the 

mobile phase composition (B), mobile phase flow rate 

(Q), and fogging gas flow rate (E) were chosen as 
"external" descriptors. However, at the same time, in an 

attempt to capture the influence of the physicochemical 

properties of the molecule, additional intramolecular 
"internal" descriptors were added, based on DFT analysis 

of the analyte. These intrinsic descriptors (Table I) also 

acted as a discriminating feature, allowing the neural 

network to assign to the values it analyzed the specific 
substance to which these values belonged.  

MATLAB software and its Deep Learning Toolbox 

were used to create the neural network. A network 
topology (Figure 2) was designed with one input layer 

containing seven descriptors (B, Q, E, L, H, D, S) 

followed by a hidden neural layer containing a multilayer 

perceptron of 50 layers. The hyperbolic tangent was 
chosen as the activation function of the hidden layer. The 

output layer contained a single target, represented by the 

signal intensity of the precursor ion. 
The neural network thus designed was trained on 396 

measured data of the studied analytes such that 100 % of 

the data were used as training data and then the data were 

classified as test data (28 data from each analyte) were 
measured afterwards and used to verify the success of the 

trained network. The training was performed until the 

success rate of the network learning on the training data, 

Fig. 2. Proposed topology of a neural network designed for learning from experimental data, b – bias, w – weights  

  A-234 TBF VX 

LUMO, eV (L) 1.77 1.9 1.61 

HOMO, eV (H) –10.18 –12.51 –9.12 

Dipole moment, Debye (D) 7.77 5.39 3.92 

S, J mol–1 K–1 (S) 478.55 549.9 540.92 

Table I 

Variables obtained by DFT analysis 
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and the validation of such a network on the test data, 

reached a value of at least 98 %. Bayesian regularization 
was chosen as the training algorithm.  

 

Acquisition of experimental data  

 
Using the XCalibur control program, the sample 

dispensing process was programmed to vary three 

essential measurement parameters, namely the mobile 
phase composition (B, [%]) represented by the percentage 

of acetonitrile, the mobile phase flow rate (Q, [µl min–1]) 

and the ShGFR value (E, [arb]). XCalibur also instructed 

the periphery of the mass detector to load the appropriate 
file containing the tuning of the ion optics, which was 

optimized to TBF.  

Parameter B could take values 0, 10, 20, 30, 40, 50, 
60, 70, 80, 90, 100 [%]. The parameter Q could take 

values of 100, 200, 300 [µl] and the value of ShGFR was 

in the interval 10–40 [arb] with a step of 10 arb, i.e. it 

could take four values. In total, XCalibur instructed 132 
possible combinations of these values to be measured for a 

single analyte. 

For the measurements of tributyl phosphate, 
substance VX and substance A-235, 396 measurements 

were taken, which were reproduced three more times to 

check the stability of the monitored signal. The mobile 

phases were not modified in any way. A volume of 1 µl of 
analyte was always injected. The observed signal intensity 

of the precursor ion was recorded in the file. 

To automate the entire process, the sample injection 

system was modified to ensure constant conditions for all 
measurements, with the minimum possible consumption 

of analyte and mobile phases. This was implemented by 

routing the sample from the autosampler away from the 

column and DAD, directly into the ESI. The dispensing 
needle was washed before and after overdosing with 

LCMS purity water. The measured results were recorded 

in a spreadsheet from where they were retrieved by the 
neural network and used for training.  

 
 

Results and discussion 
 

A script was programmed in the MATLAB 
environment to drive the trained neural network and use it 

to interpolate the graphical data to obtain visualizations of 

the experiment at a much higher resolution allowing the 
more accurate finding of the optimum parameters B, Q, 

and E. This shift in interpretation is shown in Figure 3. 

By varying the variable E, with all possible 

combinations of the variables B and Q, its value was 
obtained such that the signal intensity of the precursor ion 

was maximized and then the optimal Bopt and Qopt were 

subtracted at this value. Subsequently, an AccucoreTM C18 
2.1 mm × 150 mm × 2.6 μm column was plugged into the 

system, which proved to be the most suitable for eluting these 

groups of compounds, which were eluted isocratically 

according to their detected optima in the simulation of 
measurements using a neural network (Table II).  

Fig. 3. Original resolution of the measured raw data (a), projection of the neural network simulation into 3D (b), projection onto 
the Q, B surface (c) - all at E = 10 arb for substance A-234 

Table II 

Optimal descriptor values for maximizing the signal value of the precursor ion  

Descriptor A-234 TBF VX R33 

B-component content of mobile phase B, % 33 51 62 38 

Mobile phase flow rate, µl min–1 105 250 213 223 

ShGFR value, arb 28.35 26.66 29.6 34.2 
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Subsequently, the collision energy was optimized to 

take a high-quality ms2 spectrum of A-234 and store it in 
the library. 

To improve the ionization of the sample, and thus 

obtain an even greater response to the monitored signal, 

the aqueous mobile phase was modified first with formic 
acid, then acetic acid, and finally with trifluoroacetic acid, 

always at a concentration of 0.1 %. The gain or loss in 

signal intensity can be found in Table III. 
A fragmentation series analysis was performed on 

substance A-234 using MassFrontier software (Figure 4), 

with findings that find agreement with the study of other 

authors24. 
The possibility of the effect of hydrolysis of A-234 in 

contact with the mobile phase was verified with an 

optimum ratio of components A and B. Assuming 
a significant excess of mobile phase relative to the analyte, 

the hydrolysis observed was considered to be a first-order 

reaction, from which the half-life was derived 4 h 49 min 

and it was concluded that due to the contact of substance 
A-234 with the mobile phase during the elution on the 

column not exceeding a total time of 30 min, the effect of 

hydrolysis can be considered to be negligible.  
In a study of the hydrolysis kinetics of A-234, it was 

found that optimizing a set of experiments with neural 

networks resulted in an overall increase in the response of 

the analytical system by 1,080 %. The detection limit for 
substance A-234 became a concentration of the order of 

1 pg µl–1, for substance VX 10 pg µl–1 and for substance 

R33 also 1 pg µl–1, the criterion being a very generous 

10:1 signal-to-noise ratio (S/N) of the ion used for 
quantification. The limit of quantification of such an 

optimized method can thus be assumed to be in the order 

of tens of fg µl–1 (S/N 5:1), which is sufficient sensitivity 
for the much needed determination of ultra-trace amounts 

of the analytes of interest. 
 

 

Conclusion 
 
Analytical and scientific departments are often faced 

with a multitude of results where the interdependence of 

adjustable measurement conditions and output data can be 
classified as a nonlinear multidimensional problem. With 

the expansion of computational power, the described 

technologies are becoming more and more accessible and 

applicable to different research areas. This paper is 
a proposal for the application of neural networks and DFT 

theory to the problem of optimizing the measurement 

conditions so that the observed output signal is as intense 
as possible, which in turn allows, above all, to increase the 

sensitivity of the identification method. This set of 

procedures allows to develop a measurement methodology 

for a given analyte, which by its sensitivity will be useful 
not only for the work of chemical warfare specialists, but 

also in other fields of scientific knowledge. 
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