Electroanalytical flow systems in process analysis

Ernest Beinrohr

¹ Institute of Analytical Chemistry, Slovak University of Technology in Bratislava, Slovakia
² Department of Chemistry, University of SS. Cyril and Methodius in Trnava, Slovakia

On-line monitoring system

Monitored parameters

Physical (temperature, pressure, viscosity, flow rate ...)

Chemical (elements, compounds, pH, COD, TOC ...)

Biochemical and biological (BOC, toxicity, chlorophyl ...)

Analytical methods in process analysis

- Titrimetry
- UV-VIS spectrophotometry
- Fluorimetry
- IR spectrometry
- Mass spectrometry
- Electroanalysis

Electrochemical methods

Species-sensitive method

Direct contact of the sensor with sample High sensitivity and selectivity

Miniaturisation, mass production Simple instrumentation Simple automation Low costs

Fritz Scholz: Voltammetric techniques of analysis: the essentials. ChemTexts (2015) 1:17, DOI 10.1007/s40828-015-0016-y

Robust electrochemical cell

Long-life electrodes

On-line sample treatment

Voltammetry

Advantages

- Linear response
- Broad concentration range
- Charging currents can be eliminated
- Proven applications

Limitations

- iR drop compensation not trivial
- Switching of current ranges

Advantages

- Broad concentration ranges
- Response linearity in thin layer arrangements and stripping mode
- Direct coulometric titrations
- Simple iR drop compensation
- Simple instrumentation

Limitations

- Nonlinear concentration dependences in some cases
- Charging currents cannot be simply eliminated
- Constant current CP not working on individual microelectrodes
- Few applications available

In chronopotentiometry, a current step is applied across an electrochemical cell (usually without stirring) and the potential of the working electrode is monitored against a reference electrode. The potential-time dependence resembles an oxidation-reduction titration curve which it actually is.

$$i\tau^{1/2} = \frac{nFAC\pi^{1/2}D^{1/2}}{2}$$

$$\tau = k c^2$$

H. J. S. Sand : About the concentration at the electrodes in a solution, with special consideration of the hydrogen evolution through electrolysis of a mixture of copper sulfate and sulfuric acid . In: Journal of Physical Chemistry . tape 35, No. 1, October 1900, p. 641-651, doi : 10.1515 / zpch-1900-0143

Measurement principle: "Memory mapping"

Thomsen K N, Skov H J, Dam M (1994) A flexible instrument for voltammetry, amperometry and stripping potentiometry. Anal Chim Acta 293: 1

Chronopotentiometry: Linearity

Thin layer cell design:

Chronopotentiometry: Linearity

Pore diameter: 15 µm

Current density: 5 µA/cm²

Chronopotentiometry: Linearity τ = r z F c V/i

Background compensation

A fraction of the applied current is consumed by other procedures than the electrode reaction of the analyte species:

- i) Reaction of the electrode surface
- ii) Electrode reactions of matrix components (interfering species, impurities)
- iii) Double layer charging

E = 500 mV0,018 $\frac{nFAD_OC_O(b)}{(\pi D_O t)^{1/2}}$ $R = 100 \Omega$ 0,016 $C_{dl} = 10 \ \mu F$ 0,014 $D = 10^{-5} \text{ cm}^2 \text{ s}^{-1}$ 0,012 $A = 1 \text{ cm}^2$ Current, A 0,01 c = 0.001 mol/l0,008 0,006 0,004 $i_c = rac{E}{R_S} e^{-t/RC_{
m dl}}$ 0,002 0,002 0,004 0,006 Time, s

0,02

Cottrell, F. G. (1903-01-01). "Der Reststrom bei galvanischer Polarisation, betrachtet als ein Diffusionsproblem". Zeitschrift für Physikalische Chemie (in German). Walter de Gruyter GmbH. 42U (1): 385. doi:10.1515/zpch-1903-4229

0,01

0,008

0,012

Background compensation: On the sample

Background compensation: "SelfBlanking"

Chromium(VI) determination:

Electrode: Porous RVC 100ppi In-electrode coulom. titration: $CrO_4^{2-} + 8 H^+ + 3 e^- = Cr^{3+} + 4 H_2O$

Reduction at -10 µA

Manova A., et al: Determination of chromium(VI) and total chromium in water by in-electrode coulometric titration in a porous glassy carbon electrode. Microchim Acta 000, 1–7 (2007) DOI 10.1007/s00604-007-0751-x

Background reduction

Enhancing the Signal to Background (S/B) ratio significantly contributes to the improvement of the detection limit of any analytical method.

Signal enhancement:

- Deposition/stripping approach
- Enhancement of the electrochem. recovery (WJ vs normal flow, thinning the diffusion layer)

Background reduction:

- Electrodes with lower BG (BDD)
- MEA with overlapping diff.
 layers

Flow-through cell

Solution out **Reference** electrode Auxiliary electrode Working electrode Au wire (Co, Cu) **Reticulated Vitreous** Carbon (Cd, Sb) Solution in

Beinrohr E.: Flow-through coulometry in waste water analysis. In:Waste water. Evaluation and management, Ed. Einschlag F. S. G., Intech 2011, p. 71

Wire electrodes

0.5 and 4 mm in diameter and length., resp.

Material: Au, Pt, Ag

Porous electrodes

Reticulated vitreous carbon with 100 ppi and less porosity

Material: Glassy carbon

Diamond electrodes

Microcrystalline boron doped diamond layer with bare surface or with microelectrode array design on ceramic support

Material: BDD

Diamond electrodes

Properties Mechanical stability Electrical conductivity (boron doped diamond) Wide potential window **Biological compatibility Chemical inert**

High ratio Signal to Noise, Signal to background (SBR)

Diamond microarray electrodes (BDD-MAE) fabricated by the chemical vapour deposition technology

Flow systems

Single line

Flow systems

Three lines

Flow systems

Four and more versatile lines

Filtration

Diffusion

Ion exchange, sorption

Digestion

Diffusion

Volatile small molecules:

 NH_3 , SO_2 , HCN, CI_2 , CIO_2 ...

Josef Dvořák, et. al: Determination of Total Sulphur Dioxide in Beer Samples by Flow-Through Chronopotentiometry. *J. Inst. Brew.* 112(4), 308–313, 2006

Ion exchange

Task: **As** determination in the range of <u>10 to 200 μ g/l</u> in industrial **Cd** solutions containing <u>0.5 to 50 g/l</u>Cd.

The sample is flowing through a column packed with an Catex-type sorbent which traps the Cd2⁺ ions whereas let the $AsO_3^{3^-}$ anions through to the cell and are measured.

In the next step, the column is rinsed with NaCl solution to elute the Cd²⁺ ions which are determined as well.

Cacho F. et al: Sequential Determination of Total Arsenic and Cadmium in Concentrated Cadmium Sulphate Solutions by Flow-Through Stripping Chronopotentiometry after Online Cation Exchanger Separation. *J. Analyt. Meth. Chem.* Volume 2012, Article ID 814983, doi:10.1155/2012/814983

FIGURE 1: Flow chart diagram of the Cd/As measuring system. See explanation in the text.

Digestion:

"Soft" digestion

UV digestion

Microwave assisted digestion

Thermal digestion

Digestion

Digestion

Applications

- Metals and semi-metals (Ag, As, Au, Cd, Cu, Cr, Fe, Hg, In, Mn, Ni, Pb, Se, Sb, Tl, Zn)
- Nonmetals (Fluoride, chloride, chlorite, chlorite, chloridoxide, chlorine, bromide, bromate, iodide, sulfide, sulfite, sulfate, ammonia, hydrazine, nitrate, nitrite, cyanide, phosphate, acids, bases)
- Organics (methanol, ethanol, formaldehyde, antioxidants, EDTA)
 - Waste water
 - Underground water
 - Surface water
 - Drinking water
 - Technological aqueous solutions

Bromates (BrO₃⁻) in disinfected water

Principle

Conversion to bromine: $BrO_3^{-} + 5 Br^{-} + 6 H^+ = 3 Br_2 + 3 H_2O$

Electrochemical reduction: $Br_2 + 2 e^- = 2 Br^-$

Interferences

Oxidising species (Cl₂, ClO⁻, ClO₂, ClO₂⁻, O₃ ...) Unstable reagents (Fe²⁺, Br⁻)

Removal:

On-line diffusion pH adjustment and addition of Fe(II) In-situ reagent regeneration

— — BG **—** 50 ppb

Bromates in drinking water

Sample	Found	Reference
	μg/L	HPLC
Brescia tap water	< 5	n.d.
Brescia tap water + 20 μg/L BrO ₃ ⁻	18 ± 5	22
Kuwait tap water	44 ± 8	45
Mineral water (Fe removal by ozone)	52 ± 8	49

HIN Lecture 31.1.2022

Outlooks

- Micro- and nanoelectrode arrays (S/N enhancement)
- Microfluidics ("green" chemistry)
- "Reagentless" procedures ("green" chemistry)
- Modified electrodes (selectivity enhancement)
- In-line analysers (immersable voltammetric sensors)